Oligomeric flavanoids. Part 26.t Structure and synthesis of the first profisetinidins with epifisetinidol constituent units

Petrus J. Steynberg, ${ }^{\text {a J }}$ an P. Steynberg, ${ }^{\text {a }} \mathbf{E}$. V incent B randt, ${ }^{\text {a }}$ D aneel Ferreira ${ }^{*, a}$ and R ichard W. H emingway*,b
${ }^{\text {a }}$ D epartment of Chemistry, U niversity of the O range F ree State, P O B ox 339, Bloemfontein, 9300 South A frica
${ }^{\mathrm{b}}$ Southern Research Station, U SDA Forest Service, 2500 Shreveport H ighway, P ineville, L ouisiana 71360, U SA

Abstract

The natural occurrence of the first oligomeric profisetinidins with (2R ,3R)-2,3-cis-epifisetinidol chain extender units is demonstrated in the bark of Pithecellobium dulce (G uamúchil). Semi-synthesis using the appropriate flavan-3-ol and flavan-3,4-diol precursors permits unequivocal structural and stereochemical assignment of the novel dimeric epifisetinidol-(48,8)-catechin and epicatechins 16 and 18, the trimeric bis-epifisetinidol-(4 $, 6: 4 \beta, 8)$-catechin and epicatechins 33 and 35 , the fisetinidol-($4 \alpha, 8$)-catechin-($6,4 \beta$)epifisetinidol 37 and fisetinidol-(4a,8)-epicatechin-(6,4)-epifisetinidol 39.

The profisetinidins, with their $3^{\prime}, 4^{\prime}, 7$-trihydroxyflavan-3-ol extender units, are the most important polyflavanoids of commerce, forming the major constituents of wattle and quebracho tannins. ${ }^{1-7}$ Their genesis presumably involves coupling of the flavan-3,4-diols, fisetinidol-4 α-ol and ent-fisetinidol-4 β-ol as incipient electrophiles, to a variety of nucleophilic flavan-3-ols and related compounds. ${ }^{8} \mathrm{~N}$ aturally occurring oligomers exhibit predominantly 2,3 -trans relative stereochemistry and possess either 2R,3S (A cacia mearnsii ${ }^{1-5,7,9}$ and Colophospermum mopane ${ }^{10-13}$) or $2 S, 3 R$ (Schinopsis spp. or R hus lancea ${ }^{6,9}$) absolute configurations. 5-D eoxy (A-ring) analogues exhibiting a 2,3-cis relative configuration of the chain extender moieties are extremely rare and are hitherto restricted to two tentative $(4,6)$ -bis-fisetinidols which occur in very low concentrations in the heartwood of C. mopane, ${ }^{13}$ a promelacacinidin ${ }^{14}$ from A cacia melanoxylon, and four proteracacinidins ${ }^{15}$ from A. galpinii and A. caffra. Results relevant to the abundant occurrence of mono-, di- and tri-meric profisetinidins with a 2,3-cis relative stereochemistry of extender units from the bark of Pithecellobium dulce (Roxb.) Benth (Guamúchil, M adras thorn), a member of the Leguminosae (M imosoideae) reputed for its effectiveness as a leather tannage, ${ }^{16}$ are discussed here.

Results and discussion

The two fisetinidols $\mathbf{1}$ and $\mathbf{2}$ were named (- -fisetinidol ${ }^{17}$ and $(+)$-epifisetinidol ${ }^{18}$ respectively, some thirty years ago. In order to be consistent with the latest nomenclature proposals, ${ }^{19}$ compound $\mathbf{2}$ should be designated ent-epifisetinidol (see also ref. 8). The natural products from Guamúchil with ($2 R, 3 R$)-2,3-cis fisetinidol constituent units will thus accordingly be named as epifisetinidol-derived profisetinidins in this paper.

The methanol extract of Guamúchil bark afforded a series of mono-, di- and tri-meric profisetinidins exhibiting both 2,3trans and 2,3-cis relative configurations of the constituent fisetinidol moieties. The monomeric compounds comprised of the $3^{\prime}, 4^{\prime}, 7$-trihydroxy-flavan-3,4-diols, epifisetinidol-4 β-ol $\mathbf{3}$, ${ }^{20}$ epifisetinidol- 4α-ol $\mathbf{4}^{20}$ the fisetinidol- 4β - and 4α-ols 6 and 8^{20} and the $3^{\prime}, 4^{\prime}, 5^{\prime}, 7$-tetrahydroxyflavan-3-ol, robinetinidol $10 .{ }^{21}$ These compounds were identified by comparison of their ${ }^{1} \mathrm{H}$

[^0]

$$
6 \xi \equiv \, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H} \quad 10 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}
$$
$$
7 \xi \equiv \, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac} \quad 11 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}
$$
$$
\mathbf{8} \xi \equiv, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}
$$
$$
9 \xi \equiv, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}
$$

and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) and CD data (see Experimental section) with those of authentic samples, ${ }^{20-22}$ either as free phenol 3, or as permethylaryl ether acetates 5, 7, 9 and 11 . ${ }^{1} \mathrm{H} N \mathrm{MR}$ and CD data of the derivatives 13 and $\mathbf{1 5}$ of the known fisetinidol-($4 \alpha, 8$)-catechin and -epicatechin dimers 12^{1} and 14^{11} similarly permitted definition of their structures.
\[

$$
\begin{aligned}
& \text { \} } \equiv, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H} \\
& 14\} \equiv, R^{1}=R^{2}=H \\
& 15 \text { \} } \equiv, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}
\end{aligned}
$$
\]

Table $1{ }^{1} \mathrm{H}$ N M R peaks ($\delta_{\mathrm{H}}, 300 \mathrm{M} \mathrm{Hz}$) of flavan-3,4-diols and derivatives at 296 K . Splitting patterns and J values (Hz) are given in square brackets.

Proton	$3^{\text {a }}$	$4^{\text {a }}$ (5) ${ }^{\text {b }}$	$6^{\mathrm{a}}(7)^{\mathrm{b}}$	$8^{\text {a }}(9)^{\text {b }}$
5-H(A)	7.12 [d, 8.5]	7.27 (7.10) [d, 8.5]	7.12 (7.18) [d, 8.5]	7.27 (7.05) [d, 8.5]
6-H (A)	6.41 [dd, 2.5, 8.8]	6.41 (6.58) [dd, 2.5, 8.5]	6.42 (6.54) [dd, 2.5, 8.5]	6.43 (6.56) [dd, 2.5, 8.5]
8-H (A)	6.32 [d, 2.5]	6.25 (6.54) [d, 2.5]	6.25 (6.46) [d, 2.5]	6.19 (6.46) [d, 2.5]
2-H (B)	7.05 [d, 2.0]	7.07 (6.99) [d, 2.0]	6.92 (6.94) [d, 2.0]	6.93 (6.94) [d, 2.0]
5-H (B)	6.79 [d, 8.0]	6.78 (6.84) [d, 8.5]	6.80 (6.85) [d, 8.5]	6.79 (6.84) [d, 8.5]
6-H (B)	6.84 [dd, 2.0, 8.00]	6.48 (6.97) [dd, 2.0, 8.5]	6.75 (6.99) [dd, 2.0, 8.5]	6.75 (6.95) [dd, 2.0, 8.5]
2-H (C)	5.05 [d, 1.0]	5.0 (5.26) [br s]	4.86 (5.19) [d, 9.0, 10.5]	4.60 (5.02) [d, 10.0, 9.5]
3-H (C)	3.86 [dd, 1.0, 3.0]	3.97 (5.62) [dd, 1.0, 4.5]	3.91 (5.47) [dd, 3.5, 9.0, 10.5]	3.75 (5.54) [dd, 8.0, 10.0; 7.5, 9.5]
4-H(C)	4.45 [d, 3.0]	4.90 (6.28) [d, 4.5]	4.48 (6.15) [d, 3.5]	4.66 (6.24) [d, 8.0, 7.5]
OM ec		$\begin{aligned} & 3.79(7-A), 3.86(3-B), 3.88 \\ & (4-B) \text {, each s } \end{aligned}$	$\begin{aligned} & 3.75(7-A), 3.87(3-B),(4-B), \\ & \text { each s } \end{aligned}$	3.75 (7-A), 3.87 (3-B), (4-B), each s
OAC ${ }^{\text {c }}$		1.93 (3-C), 2.09 (4-C), each s	1.84 (3-C), 2.13 (4-C), each s	1.84 (3-C), 2.03 (4-C), each s

${ }^{\mathrm{a}}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}+5 \% \mathrm{D}_{2} \mathrm{O} \cdot{ }^{\mathrm{b}}$ Chemical shift values for derivatives in CDCl_{3} in parentheses. ${ }^{\mathrm{c}}$ Positions of the groups on the ring are given in parentheses.

Table $2{ }^{13} \mathrm{C}$ N M R peaks ($\delta_{\mathrm{c}}, 300 \mathrm{M} \mathrm{Hz}$) of flavan-3,4-diols at 296 K in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}+5 \% \mathrm{D}_{2} \mathrm{O}$

Carbon	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
5-C(A)	133.2	129.6	129.3	132.3
6-C(A)	109.3	109.1	109.3	109.2
8-C(A)	103.1	102.7	102.6	102.8
2-C(B)	115.2	115.2	115.7	115.6
5-C(B)	115.4	115.3	115.5	115.5
6-C(B)	119.2	119.2	120.6	120.2
2-C(C)	75.4	79.2	82.0	77.4
3-C(C)	72.2	70.0	74.2	71.2
4-C(C)	68.3	67.7	72.1	66.5

At ambient temperatures the ${ }^{1} \mathrm{H}$ N M R spectra (Table 3) of the derivatives $\mathbf{1 7}$ and 19 of the second pair of profisetinidin biflavanoids $\mathbf{1 6}$ and $\mathbf{1 8}$ exhibited broadened resonances reminiscent of the effects of dynamic rotational isomerism about the interflavanyl bond. A t elevated temperatures (343 K) the protons of the heterocyclic rings displayed an AMX[]$_{2,3(C)}=2.5,2.6, J_{3,4(C)}=3.5,4.2 \mathrm{~Hz}$ for 17 and 19 , respectively] and an ABMX-system []$_{2,3(F)}=7.5$ and 1.0 Hz for 17 and 19 respectively] suggesting the possibility of either a 2,3 -cis-3,4trans or a 2,3-cis-3,4-cis relative configuration of the C -ring in both products and with either 2,3-trans or 2,3-cis stereochemistry of the F -ring in 17 and 19 , respectively. Long range COSY experiments using the $2-\mathrm{H}$ (for ABX-systems of rings B and E) and $4-H$ (for $A B X$-system of ring A) resonances as reference signals, permitted definition of the constitution of the 'upper' fisetinidol and 'lower' catechin and epicatechin units in derivatives 17 and 19 respectively. In addition to the aforementioned ABX -systems, the aromatic region of each spectrum displayed a one-proton singlet ($\delta 6.23,6.24$ for 17 and 19, respectively). The chemical shifts of these singlets are reminiscent of the A-ring proton of a C-8 substituted catechin or epicatechin unit respectively. ${ }^{23}$ This was confirmed by the strong NOE interaction of the 'residual' proton with both 5-OM e (6.3, 5.9% for 17 and 19 , respectively) and $7-\mathrm{OM} \mathrm{e}(8.6,9.1 \%$ for 17 and 19 , respectively) of the 'lower' flavan-3-ol units. The highamplitude positive Cotton effects in the 220-245 nm region of the CD spectra $\left([\theta]_{241.9}+51690,[\theta]_{243.6}+44590\right.$ for 17 and 19, respectively), strongly indicated a 4β substituted $A B C$ moiety in each instance. ${ }^{24}$

Since the ${ }^{1} \mathrm{H}$ NMR coupling constants did not permit unequivocal differentiation between 2,3-cis-3,4-trans- and 2,3-cis-3,4-cis-configurations of the 'upper' flavan-3-ol units, in both 17 and 19 , weembarked on the synthesis of compounds 16 and $\mathbf{1 8}$ from precursors of known absolute stereochemistry to obtain sufficient proof of the absolute configuration of both the upper and lower units in these compounds. Initial attempts were aimed at the selective C-2 (C-ring) epimerization of the ent-fisetinidol-(4,8)-tetra-0-methylcatechins 20 and 21, available by acid-catalysed condensation of ent-fisetinidol- $4 \beta-0$ l

$16\} \equiv \, R^{1}=R^{2}=\mathrm{H}$
$17 \xi \equiv \, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}$
$18\} \equiv, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$19\} \equiv, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}$

$20\} \equiv 1$
$21\} \equiv$

$$
\begin{aligned}
& 22 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H} \\
& 23 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}
\end{aligned}
$$

(enantiomer of 8) and 3', 4',5,7-tetra-0-methylcatechin. W hereas efforts at converting the 2,3-trans-3,4-cis diastereomer 21 into its $\mathrm{C}-2\left(\mathrm{C}\right.$) epimer by heating at alkaline pH (ca. 12) ${ }^{25}$ under pressure invariably failed, the 3,4-trans isomer 20 could be epimerized at C-2, albeit in low yield (ca. 0.5%) and after prolonged reaction times. These poor results may presumably be attributed to stereoselective recyclization of an intermediate

Table $3^{1} \mathrm{H}$ N M R peaks ($\delta_{\mathrm{H}}, 300 \mathrm{M} \mathrm{Hz}$) of dimeric profisetinidin derivatives $\mathbf{1 7}, \mathbf{1 9}, \mathbf{3 0}$ and $\mathbf{3 2}$, and of the propan-2-ol derivative $\mathbf{2 3}$ in $\mathrm{CDCl}_{\mathbf{3}}{ }^{\mathbf{a}}$

Proton	17 (343 K)	19 (343 K)	30 (343 K)	32 (343 K)	23 (297 K)
5-H (A)/6-H (A)	6.72 (dd, 1.0, 8.5)	6.76 (dd, 1.0, 8.5)	6.73 (dd, 1.0, 8.5)	6.73 (dd, 1.0, 8.5)	6.96 (d, 9.0)
$6-\mathrm{H}(\mathrm{A}) / 5-\mathrm{H}(\mathrm{A})$	6.37 (dd, 2.5, 8.5)	6.35 (dd, 2.5, 8.5)	6.44 (dd, 2.5, 8.5)	6.44 (dd, 2.5, 8.5)	6.08 (dd, 2.5, 9.0)
$8-\mathrm{H}(\mathrm{A}) / 3-\mathrm{H}(\mathrm{A})$	6.29 (d, 2.5)	6.26 (br d, ca. 2.5)	6.63 (d, 2.5)	6.63 (d, 2.5)	6.46 (d, 2.5)
2-H (B)	6.94 (d, 2.0)	7.00 (d, 2.0)	7.02 (d, 2.0)	7.02 (d, 2.5)	6.83 (d, 2.0)
5-H (B)	6.79 (d, 8.5)	6.80 (d, 8.5)	6.88 or 6.86 (d, 8.0)	6.86 (d, 8.5)	6.70 (d, 8.0)
6-H (B)	6.87 (dd, 2.0, 8.5)	6.92 (dd, 2.0, 8.5)	6.97-6.92 (m)	6.96 (dd, 2.5, 8.5)	6.46 (dd, 2.0, 8.0)
$2-\mathrm{H}(\mathrm{C}) / 1-\mathrm{H}$	5.43 (d, 2.5)	5.58 (d, 2.6)	5.59 (d, 3.0)	5.59 (d, 3.0)	5.39 (d, 11.5)
$3-\mathrm{H}(\mathrm{C}) / 2-\mathrm{H}$	5.54 (dd, 2.5, 3.5)	5.65 (dd, 2.6, 4.2)	5.71 (dd, 3.0, 5.0)	5.72 (dd, 3.0, 5.0)	6.26 (dd, 2.0, 11.5)
$4-\mathrm{H}(\mathrm{C}) / 3-\mathrm{H}$	4.60 (d, 3.5)	4.68 (d, 4.2)	4.57 (dd, 1.0, 5.0)	4.54 (dd, 1.0, 5.0)	3.68 (d, 2.0)
6-H (D)	6.23 (s)	6.24 (s)	-	-	6.06 (s)
8-H (D)	-	-	6.41 (s)	6.42 (s)	-
2-H (E)	6.77 (d, 2.0)	6.87 (d, 2.0)	6.95 (d, 2.0)	7.05 (d, 2.5)	7.25 (d, 2.0)
5-H (E)	6.78 (d, 8.5)	6.77 (d, 8.5)	6.88 or 6.86 (d, 8.0)	6.89 (d, 8.5)	6.77 (d, 8.5)
6-H (E)	6.74 (dd, 2.0, 8.5)	6.70 (dd, 2.0, 8.5)	6.97-6.92 (m)	6.98 (dd, 2.5, 8.5)	6.82 (dd, 2.0, 8.5)
2-H (F)	4.57 (d, 7.5)	4.66 (br s, ca. 1.0)	5.13 (d, 6.0)	5.15 (d, 2.0)	4.35 (d, 9.5)
3-H (F)	5.27 (m)	5.37 (m)	5.40 (m)	5.50 (m)	4.99 (m)
4-H α (F)	3.08 (dd, 5.8, 16.7)	2.93 (dd, 2.1, 17.7)	2.95 (dd, 5.5, 17.0)	2.98 (dd, 3.0, 18.0)	3.14 (dd, 6.0, 16.0)
$4-\mathrm{H} \beta(\mathrm{F})$	2.70 (dd, 7.5, 16.7)	3.01 (dd, 5.0, 17.7))	2.84 (dd, 6.0, 17.0)	3.14 (dd, 5.0, 18.0)	2.34 (dd, 10.0, 16.0)
PhCH_{2}	-	-	-	-	3.34, 3.20 (both d, 13.0)
Ph	- 70 (7-A), 3.74 (5-D)	- 6	-	-	6.89-7.04
OMe	$\begin{aligned} & 3.70(7-A), 3.74(5-D) \text {, } \\ & 3.76,3.82,3.86 \text { (7-D), } \\ & 3.86,3.87, \text { each } 5 \end{aligned}$	$\begin{aligned} & 3.65,3.74,3.75, \\ & 3.83,3.85,3.86,3.87 \\ & \text { (7-D), each s } \end{aligned}$	$\begin{aligned} & 3.89,3.88,3.87, \\ & 3.86,3.81,3.64, \\ & 3.38, \text { each s } \end{aligned}$	$\begin{aligned} & 3.40(\times 2), 3.88,3.86, \\ & 3.81,3.62,3.43(\mathrm{br}), \\ & \text { each s } \end{aligned}$	$\begin{aligned} & 3.92(4-E), 3.90(7-D) \text {, } \\ & 3.86(4-B), 3.74(3-B), \\ & 3.73(5-D), 3.70(4-A), \\ & 3.44(3-E), \text { each s } \end{aligned}$
OAc	$1.87,1.81$, each s	$1.94,1.81$, each s	$2.00,1.87$, each s	1.95, 1.86, each s	$\begin{aligned} & 2.34(2-A), 1.76(3-F), \\ & 1.66(2), \text { each } s \end{aligned}$

${ }^{\text {a }}$ Splitting patterns and J values (Hz) are given in parentheses.
quinomethane of type 24. The addition of an external nucleophile to scavenge the quinomethane may then possibly enhance product formation via an addition-substitution mechanism. Thus, treatment of profisetinidin 20 with base in the presence of phenylmethanethiol followed by the appropriate derivatizations, afforded the epifisetinidol-($4 \beta, 8$)-catechin derivative 17 (ca. 5\% yield) and the 2 -acetoxy-1,3,3-triaryl-1-benzylthiopropane derivative 23 (${ }^{1} \mathrm{H}$ N M R data-Table 3). The ${ }^{1} \mathrm{H}$ N M R and $C D$ spectra of the synthetic derivative 17 were identical to those of the same derivative of the natural product 16, hence confirming the $2 \mathrm{R}, 3 \mathrm{R}, 4 \mathrm{~S}$ absolute configuration of the upper epifisetinidol chain extender unit as well as the $2 R, 3 S$ absolute configuration of the catechin DEF unit.
Formation of both the epimerized profisetinidin and the thioether $\mathbf{2 2}$ is explicable by the dual trapping of an intermediate quinomethane $\mathbf{2 4}$, either intramolecularly by the A-ring phenoxide or intermolecularly by the sulfur nucleophile (Scheme 1). The former process regenerates the starting material 20 by rapid and highly stereoselective ring closure, while the latter affords the benzyl thioether 25, both processes involving the π antibonding orbital at the si-face of C-2. Conformer 26 then permits the formation of the natural product analogue $\mathbf{2 8}$ with inversed C-2(C) configuration, either via $\mathrm{S}_{\mathrm{N}} 2$ displacement of thiolate anion or by generation of the intermediate quinomethane 27 and subsequent cyclization involving the re-face at C-2.

Conformational preferences appear to control the remarkable stereoselectivity of the pyran ring closure of quinomethanes of type $\mathbf{2 4}$, and also reaction of the latter with thiol. In solution both the ($4 \alpha, 8$)- and ($4 \beta, 8$)-profisetinidins 20 and 21 preferentially adopt compressed conformations about the interflavanyl bondsin which 4-H (C) and 7-OM e(D) are approximately eclipsed. ${ }^{25,26}$ These conformations permit an offset face-to-face arrangement of the B - and E -rings hence leading to stabilizing π-stacking ${ }^{27}$ of these rings. Such $\pi-\pi$ interactions are especially prevalent in profisetinidin 21, with its 3,4-cis (C-ring) configuration thus effectively preventing attack of the A-ring phenoxide ion at the re-face of $\mathrm{C}-2$ in an intermediate quinomethane of type 24. The increased distance between the B-and E-rings in the 3,4-trans profisetinidin 20, partially alleviates the $\pi-\pi$ interactions, thus permitting a low degree of attack at the
re-face of C-2 in quinomethane 24, and subsequent epimerization at this stereocentre with formation of the natural product derivative $\mathbf{2 8}$ in low yield. Theformation of the benzyl thioether 26 presumably opens up the conformation hence allowing increased accessibility at the equivalent of the re-face of quinomethane 27 and permitting an $\mathrm{S}_{\mathrm{N}} 2$ displacement of the thioether functionality.

Unequivocal structural proof for the novel compounds $\mathbf{1 6}$ and 18 followed from a small scale acid-catalysed condensation of epifisetinidol-4 β-ol 3, available via epimerization at C2 of ent-fisetinidol-4 β-ol, ${ }^{22}$ and catechin and epicatechin respectively. The former reaction afforded the epifisetinidol(4 4,8)-catechin 16 and epifisetinidol-(4 $\beta, 6$)-catechin 29, and the latter one the epifisetinidol-(4 $\beta, 8$)-epicatechin 18 and the (43,6)-regioisomer 31, both couplings occurring stereoselectively. ${ }^{1}$ The ${ }^{1} \mathrm{H}$ NMR and CD data of the hepta-O-methyl ether acetate derivatives $\mathbf{1 7}$ and 19 were identical to those of the corresponding derivatives of the naturally occurring profisetinidins 16 and 18. These compounds accordingly represent the first profisetinidins with ($2 R, 3 R$)-2,3-cis fisetinidol (epifisetinidol) constituent units for which structural proof via synthesis is available. A nal ogue $\mathbf{1 8}$ complements the rate series of profisetinidins associated with epicatechin. ${ }^{11}$ The same ${ }^{1} \mathrm{H}$ NMR and CD parameters that were used above to establish the structures of the hepta-0-methyl ether acetates 17 and 19, were also applied to the structure elucidation of the same derivatives 30 and 32 of the ($4 \beta, 6$)-regioisomers 29 and 31 . Their ${ }^{1} \mathrm{H}$ NMR and CD data are collated in Table 3 and in the Experimental section, respectively.
The ${ }^{1} \mathrm{H}$ N M R spectra (Table 4) of the trimeric derivatives 34, 36, 38 and 40 were also characterized by severe line-broadening at ambient temperatures. At elevated temperatures (343 K) the spectra displayed ten methoxy and three acetoxy signals, five aromatic ABX patterns as well as an ABMX and two AMX spin systems in the heterocyclic region, reminiscent of the protons of the permethylaryl ether triacetates of bis-fisetinidolcatechin/epicatechin triflavanoids. ${ }^{4} 0$ wing to the small chemical shift differences of some key reference signals, e.g. H-4 of both the C - and I -rings in all four isomers, the spin systems of the constituent units could not be differentiated using a variety of NM R techniques, e.g. HM BC. Differentiation of thesespin sys-

Scheme 1 Epimerization of ent-fisetinidol-(4 $\beta, 8$)-tetra-0-methylcatechin 20, in the presence of phenylmethanethiol

tems became possible for derivatives 38 and 40 (see Table 4) however, once the structures were confirmed by a concise synthesis (see below).

The coupling constants of the protons constituting the heterocyclic AMX systems tentatively indicated 2,3-cis-3,4$\operatorname{trans}(\mathrm{C}): 2,3-\operatorname{trans}(\mathrm{F}): 2,3-\mathrm{cis}-3,4-\operatorname{trans}(\mathrm{I}) \quad\left[\mathrm{J}_{2,3(\mathrm{C})}=3.2, \mathrm{~J}_{3,4(\mathrm{C})}=\right.$ $5.1 ; J_{2,3(F)}=5.1 ; J_{2,3(1)}=3.2, \int_{3,4(1)}=4.9 \mathrm{~Hz}$] relative configuration for derivative 34 and 2,3 -cis-3,4-trans(C):2,3-cis(F) 2,3 -cis-3,4-trans(I) $\quad[]_{2,3(C)}=3.2 ; J_{3,4(C)}=5.3 ; \quad J_{2,3(\mathrm{~F})}=$ ca. $1.0 ;$ $\left.J_{2,3(1)}=3.5, J_{3,4(1)}=6.2 \mathrm{~Hz}\right]$ relative stereochemistry for derivative $\mathbf{3 6}$. Compounds 38 and 40 are apparently based on the same flavan-3-ol DEF units [$\mathrm{Z}_{2,3(\mathrm{FF})}=6.5, \mathrm{ca} .1 .0 \mathrm{~Hz}$ for 38 and 40 respectively] as was indicated for 34 and 36 . These derivatives, however, possess chain extender units with 2,3 -trans-3,4 trans (C) and presumably 2,3-cis-3,4-trans(I) $\mathrm{J}_{2,3(\mathrm{C})}=9.5$, $\left.J_{3,4(c)}=9.5 ; J_{2,3(1)}=c a .3 .0, J_{3,4(1)}=c a .5 .0 \mathrm{~Hz}\right]$ relative configurations. When taken in conjunction with the structures of the dimeric analogues $\mathbf{1 2}, \mathbf{1 4}, \mathbf{1 6}$ and 18 , the triflavanoids presumably also comprise ($2 \mathrm{R}, 3 \mathrm{R}$)-2,3-cis-epifisetinidol units (both

ABC and GHI moieties of $\mathbf{3 3}$ and $\mathbf{3 5}$, GHI moieties of $\mathbf{3 7}$ and 39) and ($2 R, 35$)-2,3-trans-fisetinidol units (A BC moieties of 37 and 39). Since the circular dichroism method does not permit reliable stereochemical assignment at this molecular level we took recourse to the semi-synthetic approach ${ }^{1,4}$ in order to establish configuration at the eight stereocentres, and especially the stereochemistry at C-4 of both the C - and the I-rings.

Thus, acid-catalysed condensation of epifisetinidol-4 β-ol 3 with either catechin or epicatechin in a 1:6 molar ratio, stereoselectively afforded, in addition to the dimeric profisetinidins 16 or 18, the angular trimeric profisetinidins 33 or 35 . The appropriate derivatizations gave the permethylaryl ether triacetes 34 and 36 , with ${ }^{1} \mathrm{H} N M$ R and CD data identical to those of the same derivatives of the natural products 33 and 35 . A lthough all naturally occurring (2R)-proanthocyanidins with 2,3-cis relative configuration have been assigned a 3,4-trans 4 4 linkage, evidence for such an assignment is entirely based upon the upfield shift of the C-2 (C-ring) carbon resonances (γ gauche effect) ${ }^{28}$ and chiroptical data. ${ }^{29}$ Evidence for the 4β orientation of both the C - and I-rings in derivatives 34 and 36 was obtained from the high intensity positive Cotton effects $[+104700(245.8 \mathrm{~nm}),+108700(245.7 \mathrm{~nm})$ for 34 and 36 , respectively] in the CD spectra of these compounds. The dimeric profisetinidins $\mathbf{1 6}$ and $\mathbf{1 7}$ accompanying the trimers $\mathbf{3 3}$ and 35 were identical to those synthesized by acid-catalysed condensation of epifisetinidol-4 β-ol 3 with catechin and epicatechin, respectively, thus proving the 4β linkage between the C - and D -rings.

A similar approach was used in assigning the structures of the trimeric profisetinidins 37 and 39 . Since CD data were inconclusive due to the presence of both 4α and 4β interflavanyl bonds, the trimer 37 was synthesized by acid-catalysed reaction of fisetinidol-($4 \alpha, 8$)-catechin $\mathbf{1 2}$ and epifisetinidol-4 β-ol 3. The appropriate derivatizations afforded the decamethyl ether triacetate 38 with ${ }^{1}$ H N M R and CD data identical to those of the same derivative of the natural product. Trimer 39 was synthesized by condensation of epifisetinidol-(4 3,6)-epicatechin 31, available from the reaction between epifisetinidol-4 β-ol 3

Table $4{ }^{1} \mathrm{H}$ N M R peaks ($\delta_{\mathrm{H}}, 300 \mathrm{MHz}$) of trimeric profisetinidin derivatives 34, 36, 38 and 40

Proton	34*	36*	38	40
5-H (A)	7.06 (dd, 1.0, 8.2)	7.08 (d, 8.5)	7.19 (dd, 1.0, 8.0)	7.15 (dd, 1.0, 8.5)
6-H (A)	6.58 (dd, 2.5, 8.2)	6.60 (dd, 2.5, 8.5)	6.74-6.64	6.69 (dd, 2.5, 8.5)
8-H (A)	6.94 (d, 2.5)	6.94 (d, 2.5)	6.74-6.64	6.81 (d, 2.5)
2-H (B)	7.32 (d, 2.0)	7.32 (d, 2.0)	7.12 (d, 2.0)	7.04 (d, 2.0)
5-H (B)	6.78 (d, 8.2)	6.79 (d, 8.5)	6.75 (d, 8.0)	6.69 (d, 8.0)
6-H (B)	7.24 (dd, 2.0, 8.2)	7.25 (dd, 2.0, 8.5)	7.01 (dd, 2.0, 8.0)	6.94 (dd, 2.0, 8.0)
2-H(C)	6.13 (d, 3.2)	6.10 (d, 3.2)	4.97 (d, 9.5)	5.05 (d, 9.5)
$3-\mathrm{H}(\mathrm{C})$	6.26 (dd, 3.2, 5.1)	6.28 (dd, 3.2, 5.3)	6.68 (t, 9.5)	6.75 (t, 9.5)
4-H (C)	5.01 (dd, 1.0, 5.1)	5.01 (d, 5.3)	5.07 (dd, 1.0, 9.5)	5.09 (dd, 1.0, 9.5)
2-H (E)	7.03 (d, 2.2)	7.11 (d, 2.0)	6.87 (br s)	6.85 (d, 2.0)
5-H (E)	6.74 (d, 8.0)	6.76 (d, 8.0)	6.74-6.64	$6.81(\mathrm{~d}, 8.2)$
6-H (E)	6.97 (dd, 2.2, 8.0)	6.84 (dd, 2.0, 8.0)	6.74-6.64	$6.74 \text { (dd, 2.0, 8.2) }$
2-H (F)	4.97 (d, 5.1)	4.66 (br s)	5.49 (d, 6.5)	5.33 (br s)
3-H (F)	5.53 (m)	5.46 (m)	5.42 (m)	5.50 (m)
$\begin{aligned} & 4-H \alpha(F) \\ & 4-H \beta(F) \end{aligned}$	2.99 (d, 5.1)	3.08 (d, 4.6)	$\begin{aligned} & 3.07 \text { (dd, 5.0, 16.0) } \\ & 2.95 \text { (dd, 6.5, 16.0) } \end{aligned}$	3.34 (d, 3.5)
5-H(G)	7.09 (dd, 1.0, 8.5)	7.05 (d, 8.5)	7.11 (dd, 1.0, 8.5)	7.14 (dd, 1.0, 8.5)
6-H (G)	6.65 (dd, 2.5, 8.5)	6.59 (dd, 2.5, 8.5)	6.63 (dd, 2.5, 8.5)	6.62 (dd, 2.5, 8.5)
8-H(G)	6.76 (d, 2.5)	6.66 (d, 2.5)	6.98 (d, 2.5)	6.99 (d, 2.5)
2-H(H)	7.18 (d, 2.0)	7.23 (d, 2.0)	7.32 (d, 2.1)	7.32 (d, 2.0)
5-H(H)	6.75 (d, 8.2)	6.74 (d, 8.5)	6.78 (d, 8.0)	6.79 (d, 8.2)
6-H(H)	7.13 (dd, 2.0, 8.2)	7.14 (dd, 2.0, 8.5)	7.23 (dd, 2.1, 8.0)	7.25 (dd, 2.0, 8.2)
2-H(I)	5.79 (d, 3.2)	5.94 (d, 3.5)	6.15 (d, 3.0)	6.16 (d, 2.8)
3-H (I)	6.30 (dd, 3.2, 4.9)	6.39 (dd, 3.5, 6.2)	6.25 (dd, 3.0, 4.5)	6.26 (dd, 2.8, 5.0)
$4-\mathrm{H}(\mathrm{I})$	4.97 (d, 4.9)	5.03 (d, 6.2)	5.05 (dd, 1.0, 4.5)	5.06 (dd, 1.0, 5.0)
OMe	$\begin{aligned} & 3.73,3.64,3.62,3.56,3.55 \text {, } \\ & 3.54,3.50,3.49,3.28 \text { (br), } \end{aligned}$	$\begin{aligned} & 3.84,3.65,3.62,3.57(\times 2), \\ & 3.55,3.51,3.47 \text { (br), 3.44, } \end{aligned}$	$\begin{aligned} & 3.76 \text { (br), 3.69, 3.67, 3.65, } \\ & 3.56,3.55,3.55,3.51,3.48 \end{aligned}$	$\begin{aligned} & 3.74,3.72(\mathrm{br}), 3.65,3.57, \\ & 3.56(\times 2), 3.55,3.52(\times 2), \end{aligned}$
	each s	3.39 (br), each s	3.22 (br), each s	3.35 (br), each s
OAc	1.75, 1.73 ($\times 2$), each s	$1.79,1.77,1.72$, each s	1.78, 1.72, 1.61, each s	1.71, 1.59, 1.56, each s

* The allocations of the protons of the ABC- and GHI-moieties may be interchanged.
and epicatechin (see above), and fisetinidol-4 α-ol 8 under mild acidic conditions. Its permethylaryl ether triacetate $\mathbf{4 0}$ proved to be identical to the natural product derivative by comparison of ${ }^{1} \mathrm{H} N M R$ and CD data. The absolute configuration at $\mathrm{C}-4$ of the $A B C$ moiety is then defined by the coupling constants $\left.\left({ }^{3}\right)_{2,3}=3_{3,4}=9.5 \mathrm{~Hz}\right)$ reminiscent of 2,3-trans-3,4-trans stereochemistry.
Triflavanoids 33, 35, 37 and 39 accordingly represent the first trimeric profisetinidins with epifisetinidol chain extender units. Together with the dimeric analogues $\mathbf{1 6}$ and 18 they arehitherto the only profisetinidins with a 2,3 -cis relative configuration whose structures have been rigorously established by synthesis.
We have thus demonstrated an extended stereochemical diversity among the economically important group of profisetinidin oligomers. The compounds with epifisetinidol constituent units, e.g. 16 and 18 represent the 5-deoxy (A -ring) analogues of the epicatechin-($4 \beta, 6 / 8$)-catechin or -epicatechin oligomers which are ubiquitous in the class of procyanidin condensed tannins.

Experimental

${ }^{1}$ H NMR Spectra were recorded on a Bruker AM - 300 spectrometer for solutions as indicated, with $\mathrm{M}_{4} \mathrm{Si}$ as internal standard. FAB M ass spectra were recorded on a VG 70-70E instrument with a VG 11-250 j data system and an iontech saddlefield FA B gun. TLC was performed on precoated M erck plastic sheets (silica gel $60 \mathrm{PF}_{254}, 0.25 \mathrm{~mm}$) and the plates were sprayed with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCHO}(40: 1 \mathrm{v} / \mathrm{v})$ after development. Preparative plates (PLC) [20 $\times 20 \mathrm{~cm}$, K ieselgel $\left.\mathrm{PF}_{254}(1.0 \mathrm{~mm})\right]$ were air dried and used without prior activation. Column chromatography was performed on Sephadex LH-20 or Cellulose (Avicell ${ }^{\circledR}, 20-100 \mu \mathrm{~m}$ particle size) in various columns, solvent systems and flow rates (to be specified in each instance). M ethylations were performed with an excess of diazomethane in M EOH -diethyl ether over a period of 48 h at $-15^{\circ} \mathrm{C}$, while acetylations were conducted in acetic anhydride-pyridine at ambient temperature. Evaporations were done under reduced
pressure at ambient temperature in a rotary evaporator, and freeze drying of aqueous solutions on a Virtis 12SL freezemobile.

Isolation of phenolic compounds

A Craig enriched fraction (20 g) (top and bottom phases of tubes 7-13) from a 20 tube countercurrent assembly [water-butan-2-ol-hexane ($5: 4: 1, \mathrm{v} / \mathrm{v}$) , 100 ml underphase] of the methanol extract of Guamúchil bark was separated on Sephadex LH-20 in ethanol ($5 \times 160 \mathrm{~cm}$ column, flow rate 1 ml $\mathrm{min}^{-1}, 16 \mathrm{~min}$ fractions, first 2.0 I of eluent discarded) to give the following fractions: GA (tubes 60-90, 139 mg), GB(105$130,74 \mathrm{mg})$, GC (137-170, 72 mg), GD (171-200, 80 mg), GE (201-258, 182 mg), GF (259-300, 167 mg), G G (301-380, 570 mg), GH ($381-420,430 \mathrm{mg}$), GI ($421-520,3.17 \mathrm{~g}$), GJ (521$620,2.13 \mathrm{~g})$, GK (621-760, 2.8 g), GL (761-800, 540 mg), G M (801-1000, 2.48 g) and GN(1001-1130, 1.01 g).
Fraction GA gave epifisetinidol-4 β-ol $\mathbf{3}^{18}$ as a white solid (139 mg); δ_{H} (Table 1); CD $[\theta]_{328.8}-53,[\theta]_{286.2}-1700,[\theta]_{267.3} 75$, $[\theta]_{237.3}-1100,[\theta]_{229.8} 190,[\theta]_{221.7}-770,[\theta]_{215.8}-32$ and $[\theta]_{209.1}$ 1600.

Fraction GB (74 mg) was methylated and subsequently separated by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) to give two bands, $R_{F} 0.31(17 \mathrm{mg})$ and $0.27(19 \mathrm{mg})$. A cetylation of the $R_{F} 0.31$ band followed by PLC in benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v}$) gavetri-0-methyl-3,4-di-O-acetylfisetinidol-4 β-ol 7 ($15 \mathrm{mg}, \mathrm{R}_{\mathrm{F}} 0.51$). ${ }^{20}$ Similar treatment of the $R_{F} 0.27$ band afforded the same derivative 9 of fisetinidol-4 α-ol $8\left(R_{F} 0.49,17 \mathrm{mg}\right) .{ }^{20}$
Fraction GC (72 mg) was methylated and purified by PLC in benzene-acetone ($7: 3, v / v$) to give a methyl ether ($R_{F} 0.45$, 25 mg) which was acetylated and eventually purified by PLC in benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v}$) to afford tetra-0-methyl-3-0acetylrobinetinidol 11^{21} as a white solid, CD $[\theta]_{320} 15,[\theta]_{298}$ $-320,[\theta]_{283.3}-9600,[\theta]_{264.3}-101,[\theta]_{256.7} 11,[\theta]_{242.8} 5900,[\theta]_{235}$ $1500,[\theta]_{229} 3500,[\theta]_{224.4}-170,[\theta]_{221.5}-3100,[\theta]_{216.5} 1500,[\theta]_{212.3}$ -1600 and $[\theta]_{206.5} 3500$.
Fraction GD (80 mg) was subjected to the same derivatizations and purifications as above to eventually give tri-0-
methyl-3,4-di-0-acetylepifisetinidol-4 α-ol $5^{20}\left(R_{F} 0.31,20\right.$ mg); δ_{H} (Table 1); CD $[\theta]_{320}-250,[\theta]_{295.2}-430,[\theta]_{282.2}-6700$, $[\theta]_{252.2}-570,[\theta]_{240.3}-14000,[\theta]_{228.5} 2500,[\theta]_{222.4}-290,[\theta]_{215.2}$ 1400 and $[\theta]_{208.5} 6400$.
M ethylation of fraction G G (570 mg) and PLC in benzeneacetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave a main band at $\mathrm{R}_{\mathrm{F}} 0.26(105 \mathrm{mg})$ which was further resolved by PLC in benzene-acetone ($17: 3, \mathrm{v} / \mathrm{v}, \times 4$) into two bands at $R_{F} 0.42(45 \mathrm{mg})$ and $0.35(42.5 \mathrm{mg})$. The R_{F} 0.42 band was acetylated and purified by PLC in benzeneacetone (19:1, v/v, $\times 3$) to give epifisetinidol-($4 \beta, 8$)-catechin hepta-O-methyl ether diacetate 17 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.24,28 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 744.2780 . \mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires M , 744.2781); δ_{H} (Table 3); CD $[\theta]_{291.5}-1200,[\theta]_{285.4} 390,[\theta]_{275.1}$ $-5400,[\theta]_{241.9} 52000,[\theta]_{214.7}-1300$ and $[\theta]_{208.6} 8700$. A cetylation of the $R_{F} 0.35$ band followed by PLC purification in benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v}$) gave epifisetinidol-($4 \beta, 8$)-epicatechin hepta-O-methyl ether diacetate 19 as a white amorphous solid ($R_{F} 0.27,35 \mathrm{mg}$) (Found: M^{+}, 744.2779. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires M , 744.2781); $\delta_{\mathbf{H}}$ (Table 3); CD $[\theta]_{291}-2100,[\theta]_{275.2}-6400,[\theta]_{243.6}$ $45000,[\theta]_{230}-1700,[\theta]_{219} 50000$ and $[\theta]_{201}-4700$.
Fraction GH (430 mg) was methylated and the mixture was resolved by PLC in benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v}$) to give a main band at $R_{F} 0.34$ (126 mg). A cetylation of this fraction followed by PLC in benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v}$) afforded two main bands at $R_{F} 0.28(28 \mathrm{mg})$ and $0.24(23 \mathrm{mg})$. The former band afforded fisetinidol-($4 \alpha, 8$)-catechin hepta-0-methyl ether diacetate $\mathbf{1 3}^{1}$ and the latter one, fisetinidol-(4a,8)-epicatechin hepta-0methyl ether diacetate $15 .{ }^{1}$
A portion (200 mg) of fraction GI was methylated and the mixture was separated by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) to give two main bands at $R_{F} 0.35(51 \mathrm{mg})$ and $0.11(23 \mathrm{mg})$. A cetylation of the former band followed by PLC in benzeneacetone ($17: 3, \mathrm{v} / \mathrm{v}$) afforded bis(epifisetinidol)-($4 \beta, 6: 4 \beta, 8$)catechin deca-O-methyl ether triacetate 34 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.42,34 \mathrm{mg}$) (Found: $\mathrm{M}^{+} 1099.3960 . \mathrm{C}_{61} \mathrm{H}_{63} \mathrm{O}_{19}$ requires $\mathrm{M}, 1099.3963$; δ_{H} (Table 4); CD $[\theta]_{300}-420,[\theta]_{290}$ $-7400,[\theta]_{281.1} 420,[\theta]_{259.1} 7800,[\theta]_{245.8} 100000,[\theta]_{236.4}-2900$, $[\theta]_{230.4} 11000,[\theta]_{225.4} 4100,[\theta]_{220.4} 8800,[\theta]_{214.8} 2.6$ and $[\theta]_{208.7}$ 15000 . The $R_{F} 0.11$ band was acetylated and purified by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) to give bis(epifisetinidol)-(4ß,6: $4 \beta, 8)$-epicatechin deca- 0 -methyl ether triacetate 36 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.26,17 \mathrm{mg}$) (Found: M^{+}, 1099.3959. $\mathrm{C}_{61} \mathrm{H}_{63} \mathrm{O}_{19}$ requires M , 1099.3963); δ_{H} (Table 4); CD $[\theta]_{300}-610$, $[\theta]_{290}-7100,[\theta]_{280.2} 130,[\theta]_{274.2} 5800,[\theta]_{259.2} 8500,[\theta]_{245.7}$ $110000,[\theta]_{233.7}-2100,[\theta]_{228} 7500,[\theta]_{222.5}-5100$ and $[\theta]_{209.5}$ 16000.

A portion (200 mg) of fraction GJ was methylated and the mixture was resolved by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) to give a main band at $R_{F} 0.29(80 \mathrm{mg})$. This was acetylated and purified by PLC in benzene-acetone ($17: 3, \mathrm{v} / \mathrm{v}, \times 2$) to give epifisetinidol-(4 4,6)-epicatechin-($8,4 \alpha$)-fisetinidol deca-O-methyl ether triacetate 40 as a white amorphous solid ($R_{F} 0.33,20 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 1099.3962 . \mathrm{C}_{61} \mathrm{H}_{63} \mathrm{O}_{19}$ requires M , 1099.3963); δ_{H} (Table 4); CD $[\theta]_{300}-440,[\theta]_{287.5}-6900,[\theta]_{281.6}-230,[\theta]_{272.6}$ $7600,[\theta]_{257.6} 3300,[\theta]_{243.9} 4100,[\theta]_{228.9}-37,[\theta]_{222.9} 180,[\theta]_{212.9}$ 6300 and $[\theta]_{206.9}-5900$.

M ethylation of a portion (200 mg) of fraction GK followed by PLC in benzene-acetone-methanol ($6: 3: 1, \mathrm{v} / \mathrm{v}$) afforded a main band at $R_{F} 0.26(80 \mathrm{mg})$. A cetylation and subsequent purification by PLC in benzene-acetone ($17: 3, \mathrm{v} / \mathrm{v}, \times 2$) gave epifisetinidol-($4 \beta, 6$)-catechin-($8,4 \alpha$)-fisetinidol deca- 0 -methyl ether triacetate 38 as a white amorphous solid ($R_{F} 0.38,35 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 1099.3961 . \mathrm{C}_{61} \mathrm{H}_{63} \mathrm{O}_{19}$ requires M , 1099.3963); δ_{H} (Table 4); CD $[\theta]_{300}-98,[\theta]_{288}-8700,[\theta]_{281.6}-210,[\theta]_{272.2}$ 9200, $[\theta]_{259.2} 5300,[\theta]_{244.4} 49000,[\theta]_{235.4} 3300,[\theta]_{231.5} 6600,[\theta]_{227.9}$ $-250,[\theta]_{224.9}-5000,[\theta]_{215.9} 3600$ and $[\theta]_{207.9}-8700$.

C-2 E pimerization of ent-fisetinidol-4 β-01 ${ }^{22}$

A solution of ent-fisetinidol- 4β-ol (enantiomer of compound 8) $(10 \mathrm{~g})$ in water (800 ml) was heated for 2 h in a pressure reaction
vessel at a steam pressure of 200 kPa . The vessel was rapidly cooled in a waterbath and the reaction mixture was freeze-dried and separated on Sephadex LH-20 in ethanol-water ($1: 4, \mathrm{v} / \mathrm{v}$) ($5 \times 140 \mathrm{~cm}$ column, flow rate $1 \mathrm{ml} \mathrm{min}^{-1}, 16 \mathrm{~min}$ fractions, first 11 of eluent discarded) to give the following fractions: A (tubes $141-164,1.1 \mathrm{~g})$, B ($165-178,1.23 \mathrm{~g}$), C (178-189, 500 mg), D (190-210, 1.04 g$)$, E (211-245, 2.31 g$), \mathrm{F}(246-290,1.80 \mathrm{~g})$ and G (291-326, 1.02 g$)$. Fraction B, comprising a mixture of ent-fisetinidol-4 α-ol (enantiomer of 6), epifisetinidol-4 β-ol 3 and epifisetinidol- 4α-ol 4 ($10: 25: 12$ by ${ }^{1} \mathrm{H}$ NMR analysis), was further resolved by flash column chromatography on cellulose in water to give the following fractions: B-1 (tubes 8-17, 523 mg), B-2 (19-21, 209 mg) and B-3 ($24-26,251 \mathrm{mg}$). F ractions A (see above) and B-2 afforded epifisetinidol-4 β-ol $3 ; \ddagger \delta_{\mathrm{H}}$ (Table 1); δ_{c} (Table 2); CD $[\theta]_{336.9}-3.8,[\theta]_{298.7}-54,[\theta]_{286}-1300,[\theta]_{270.7}$ $-2.3,[\theta]_{266.7} 32,[\theta]_{254.7}-30,[\theta]_{247.6}-9.3,[\theta]_{237.4}-660,[\theta]_{230.4} 58$, $[\theta]_{222.9} 230,[\theta]_{216.5}-130,[\theta]_{212.5} 38,[\theta]_{208.5}-280$ and $[\theta]_{205.7}-1.8$. Fraction F gave the starting material ent-fisetinidol-4 3 -ol; δ_{H} (Table 1); δ_{C} (Table 2); CD $[\theta]_{330} 56,[\theta]_{229.6} 160,[\theta]_{290.6} 1100$, $[\theta]_{277.6}-200,[\theta]_{254.6} 170,[\theta]_{241.5} 8600,[\theta]_{233.3}-250,[\theta]_{220.1} 930$ and $[\theta]_{203.9}-100$. Fractions B-1 and C afforded ent-fisetinidol4α-ol (enantiomer of 6); $\delta_{\mathbf{H}}($ Table 1$) ; \delta_{\mathbf{c}}$ (Table 2); CD $[\theta]_{330} 10$, $[\theta]_{301.2}-30,[\theta]_{290.7} 1500,[\theta]_{283.4}-140,[\theta]_{279.4}-180,[\theta]_{269.3}$ $-1800,[\theta]_{251.6}-270,[\theta]_{242.2}-1400,[\theta]_{236.9}-35,[\theta]_{234.9} 170$, $[\theta]_{230.9} 11,[\theta]_{220.2} 512,[\theta]_{213.7}-170,[\theta]_{208.3} 390$ and $[\theta]_{202.6}-370$. Fraction B-3 gave epifisetinidol-4 α-ol $4 ; \delta_{\mathrm{H}}$ (Table 1); $\delta_{\mathbf{C}}$ (Table 2); CD $[\theta]_{330}-120,[\theta]_{310} 220,[\theta]_{296} 260,[\theta]_{292.9}-4.1,[\theta]_{255.9}$ $-1600,[\theta]_{278.9}-1900,[\theta]_{253.3}-170,[\theta]_{240.1}-6000,[\theta]_{233}-18$, $[\theta]_{231.1} 380,[\theta]_{226.3}-340,[\theta]_{213.7} 1100$ and $[\theta]_{204.7}-370$.

Synthesis of ent-fisetinidol-(4 $\beta, 8$)- and -($4 \alpha, 8$)-catechin tetra-0methyl ether 20 and 21

Tetra-0-methylcatechin (14 g) and ent-fisetinidol-4 β-ol (enantiomer of $8,5.8 \mathrm{~g}$) were dissolved in 75% aq. methanol (700 ml), the pH was adjusted to 3 with 1 m HCl and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . Water (500 ml) was added, the mixture was neutralized with 2% aqueous NaHCO_{3} and the methanol was evaporated. The aqueous solution was freeze-dried and the mixture was resolved on Sephadex LH-20 in ethanol-hexane $(3: 1, \mathrm{v} / \mathrm{v})\left(4 \times 130 \mathrm{~cm}\right.$ column, flow rate $1 \mathrm{ml} \mathrm{min}^{-1}, 16 \mathrm{~min}$ fractions for tubes 1-120 and then 32 min fractions, first 1 I of eluent discarded) to give threefractions: A (tubes 1-80, 8.3 g), B (170-259, 5.1 g) and C (260-350, 5.8 g). F raction A consisted of tetra- 0 -methyl catechin. Fractions B and C gave the title compounds 20 and 21 respectively by comparison of the physical data of the permethylaryl ether diacetates with those of authentic specimens. ${ }^{1}$

Base-catalysed C-2 epimerization of ent-fisetinidol(4 4,8)catechin tetra-0-methyl ether 20

The profisetinidin $20(1 \mathrm{~g})$ was dissolved in 'argon degassed' water (80 ml) and the pH was adjusted to ca. 12 with 1 m NaOH under an argon atmosphere. This mixture was heated at $90^{\circ} \mathrm{C}$ for 25 h in a 'capped' reaction vial, cooled and the pH was adjusted to ca. 3 with 1 m HCl . Extraction with ethyl acetate ($3 \times 200 \mathrm{ml}$), drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the solvent followed by chromatography on Sephadex LH-20 in ethanolhexane ($7: 3 \mathrm{v} / \mathrm{v}$) $\left(3 \times 100 \mathrm{~cm}\right.$ column, $1 \mathrm{ml} \mathrm{min}^{-1}$ flow rate, 16 min fractions) afforded two fractions: A (tubes 1-32, 17 mg) and B (tubes $33-80,900 \mathrm{mg}$). Fraction B gave the starting material. M ethylation of fraction A followed by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) gave a main band at $\mathrm{R}_{\mathrm{F}} 0.3$ (2 mg). This was acetylated and purified by PLC in benzeneacetone ($9: 1, \mathrm{v} / \mathrm{v}$) to give epifisetinidol-($4 \beta, 8$)-catechin hepta-O-methyl ether diacetate 17 with ${ }^{1} \mathrm{H} N M R$ and CD data identical to those of the same derivative of the natural product 16.

[^1]
B ase-catalysed C-2 epimerization of ent-fisetinidol-(4ß,8)catechin tetra- 0 -methyl ether 20 in the presence of toluene- α thiol

Profisetinidin $20(1 \mathrm{~g})$ and toluene- α-thiol (790 mg) were dissolved in 'argon degassed' water (80 ml), the pH of the solution was adjusted to ca. 12 with 1 m NaOH under an argon atmosphere and the mixture was heated at $90^{\circ} \mathrm{C}$ for 25 h in a 'capped' reaction vial. The mixture was cooled to room temperature and the resulting precipitate was filtered off and thoroughly washed with hexanes to remove the excess of toluene- α thiol. Separation on Sephadex LH-20 in ethanol-hexane (7:3, $\mathrm{v} / \mathrm{v})\left(3 \times 120 \mathrm{~cm}\right.$ column, flow rate of $1 \mathrm{ml} \mathrm{min}^{-1}, 16 \mathrm{~min}$ fractions) afforded six fractions: A (tubes 26-36, 11 mg), B ($46-56$, 10.5 mg), C ($58-68,33 \mathrm{mg}$), D ($72-82,45 \mathrm{mg}$), E ($86-94,109$ mg) and F ($95-123,560 \mathrm{mg}$). Fraction D was methylated and purified by PLC in benzene-acetone ($7: 3, \mathrm{v} / \mathrm{v}$) to give a band at $R_{F} 0.46(40 \mathrm{mg})$ which was acetylated and finally purified by PLC in benzene-acetone ($9: 1 \mathrm{v} / \mathrm{v}$) to give epifisetinidol($4 \beta, 8$)-catechin hepta- 0 -methyl ether diacetate $17\left(R_{F} 0.30,40\right.$ mg) with ${ }^{1} \mathrm{H} N M R$ and $C D$ data identical to the same derivative of the natural profisetinidin 16. Fraction C was similarly methylated and separated by PLC in benzene-acetone ($4: 1$, v / v) to give a main band at $\mathrm{R}_{\mathrm{F}} 0.23$ (12 mg). This was acetylated and purified by PLC in benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v}$) to give (2R,3S)-2-acetoxy-1-benzylthio-3-(2,4-dimethoxyphenyl) -3-[(2R , 3S)-3-acetoxy-3', $4^{\prime}, 5,7$-tetramethox yflavan-8-yl]-
propane 23 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.30,8 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 909.3150 . \mathrm{C}_{50} \mathrm{H}_{53} \mathrm{O}_{14} \mathrm{~S}$ requires $\mathrm{M}, 909.3156$); δ_{H} (Table 3).

Synthesis of di- and tri-meric profisetinidins

Catechin (3 g) and epifisetinidol-4 -ol (500 mg) were dissolved in $0.1 \mathrm{~m} \mathrm{HCl}(200 \mathrm{ml})$ and the mixture was stirred for 12 h at room temperature under a nitrogen atmosphere. The mixture was extracted with ethyl acetate ($4 \times 200 \mathrm{ml}$), the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The light-brown residue (3.3 g) was subjected to column chromatography on Sephadex LH-20 in ethanol ($3 \times 100 \mathrm{~cm}$ column, flow rate $1 \mathrm{ml} \mathrm{min}^{-1}, 16 \mathrm{~min}$ fractions, first 800 ml of eluent discarded) to give four fractions: A (tubes 112-154, 2.4 g), B (205-270, 545 mg), C ($332-370,184 \mathrm{mg}$) and D (388-420, $28 \mathrm{mg})$. Fraction A comprised of catechin, fraction B of epifisetinidol-($4 \beta, 8$)-catechin 16, fraction C of epifisetinidol(4 $4 \beta, 6$)-catechin 29 and fraction D of bis(epifisetinidol)$(4 \beta, 6: 4 \beta, 8)$-catechin 33. A portion (50 mg) of fraction C was subjected to consecutive methylation and acetylation. Purification by PLC in toluene-ethyl acetate-acetone ($7: 2: 1, \mathrm{v} / \mathrm{v}, \times 2$) of the methyl ether acetate fraction afforded epifisetinidol($4 \beta, 6$)-catechin hepta- 0 -methyl ether diacetate 30 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.38,40 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 744.2780$. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $\mathrm{M}, 744.2781$); δ_{H} (Table 3); CD $[\theta]_{288} 6348$, $[\theta]_{243.1} 85080,[\theta]_{234} 10890,[\theta]_{230.5} 12890,[\theta]_{215}-7279$ and $[\theta]_{208}$ 5207.

Similar treatment of epicatechin (3 g) and epifisetinidol-4 $\mathrm{\beta}$-ol 3 (500 mg) afforded five fractions: A (tubes $50-90,2.2 \mathrm{~g}$), B ($134-190,620 \mathrm{mg}$), C ($230-272,106 \mathrm{mg}$), D ($273-285,95 \mathrm{mg}$) and E (286-305, 15 mg). Fraction A gave epicatechin, fraction B epifisetinidol-(4 3,8)-epicatechin 18, fraction C epi-fisetinidol-(4 3,6)-epicatechin 31, fraction E bis(epifisetinidol)($4 \beta, 6: 4 \beta, 8$)-epicatechin 35 and fraction D a mixture of the ($4 \beta, 6$)-biflavanoid and triflavanoid 35. A portion of fraction C (50 mg) was methylated and the resultant crude product acetylated and separated by PLC in toluene-ethyl acetateacetone ($7: 2: 1, \mathrm{v} / \mathrm{v}, \times 2$) to give bis(epifisetinidol)-(48,6: $4 \beta, 8)$-catechin hepta- 0 -methyl ether diacetate 33 as a white amorphous solid ($\mathrm{R}_{\mathrm{F}} 0.29,36 \mathrm{mg}$) (Found: $\mathrm{M}^{+}, 744.2779$. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $\mathrm{M}, 744.2781$); δ_{H} (Table 3); CD [$\left.\theta\right]_{290.1}$ $-3066,[\theta]_{243.7} 67580,[\theta]_{234.3}-2435,[\theta]_{225.5} 13330,[\theta]_{218.2} 1532$ and $[\theta]_{211.6} 8871$.

Fisetinidol-($4 \alpha, 8$)-catechin $\mathbf{1 2}^{1}$ (100 mg) and epifisetindol-
4β-ol $3(52 \mathrm{mg})$ were dissolved in $0.1 \mathrm{~m} \mathrm{HCl}(30 \mathrm{ml})$ and the mixture was stirred for 12 h at room temperature under nitrogen. The mixture was extracted with ethyl acetate ($4 \times 50 \mathrm{ml}$), the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The residual material (145 mg) was methylated and separated by PLC in benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v}$) to give two main bands at $R_{F} 0.34(41 \mathrm{mg}$) and 0.28 (92 mg). The former band gave biflavanoid 12. A cetylation of the $R_{F} 0.28$ band and PLC in benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v}$) afforded the epifisetinidol$(4 \beta, 6)$-catechin-($8,4 \alpha$)-fisetinidol derivative 38 with ${ }^{1} \mathrm{H}$ NMR and CD data identical to those of the same derivative of the natural profisetinidin 37.

When the epifisetinidol-($4 \beta, 6$)-epicatechin biflavanoid 31 (100 mg) and fisetinidol- $4 \alpha-\mathrm{ol}(52 \mathrm{mg}$) were treated as above, the unchanged biflavanoid (42 mg) and epifisetinidol-($4 \beta, 6$)-epicatechin-($8,4 \alpha$)-fisetinidol 39 was obtained. The latter was methylated and purified by PLC in benzene-acetone ($7: 3 \mathrm{v} / \mathrm{v} \mathrm{v}$) to give a band at $R_{F} 0.28(80 \mathrm{mg})$ which was acetylated and purified by PLC in benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v}$) to give the trimeric profisetinidin derivative $\mathbf{4 0}\left(\mathrm{R}_{\mathrm{F}} 0.35,73 \mathrm{mg}\right)$ with identical ${ }^{1} H N M R$ and CD to the same derivative of the natural product 39.

Acknowledgements

Financial support by the Foundation for Research Development, Pretoria, the Sentrale Navorsiongsfonds of this University and by the M arketing Committee, Wattle Bark Industry of South A frica, is acknowledged. The work was also supported by U SDA Competitive G rants 94-03395 and 91-371036492.

References

1 J. J. Botha, D. Ferreira and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1235.
2 D. G. Roux and D. Ferreira, P ure A ppl. Chem., 1982, 54, 2465.
3 D. G. Roux and D. Ferreira, Fortschr. Chem. Org. N aturst., 1982, 41, 47.

4 J. J. Botha, P. M. Viviers, D. A. Young, I. C. du Preez, D. Ferreira, D. G. Roux and W. E. Hull, J. Chem. Soc., Perkin Trans. 1, 1982, 527.

5 P. M. Viviers, J. J. Botha, D. Ferreira, D. G. Roux and H. M. Saayman, J. Chem. Soc., Perkin Trans. 1, 1983, 17.
6 P. M. Viviers, H. Kolodziej, D. A. Young, D. Ferreira and D. G. Roux, J. C hem. Soc., Perkin Trans. 1, 1983, 2555.

7 A. Cronjé, J. P. Steynberg, E. V. Brandt, D. A. Young and D. Ferreira, J. Chem. Soc., Perkin Trans. 1, 1993, 2467.

8 L. J. Porter in The Flavonoids. Advances in Research since 1980, ed. J. B. Harborne, Chapman and H all, London, 1988, p. 21; and in Flavonoids. A dvances in Research since 1986, ed. J. B. Harborne, Chapman and H all, L ondon, 194, p. 23.
9 E. V. Brandt, D. A. Young, D. Ferreira and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1987, 2353.
10 J. A. Steenkamp, J. C. S. M alan, D. G. Roux and D. Ferreira, J. C hem. Soc., Perkin Trans. 1, 1988, 1325.

11 J. P. Steynberg, J. F. W. Burger, J. C. S. M alan, A. Cronjé, D. A. Young and D. Ferreira, P hytochemistry, 1990, 29, 275.

12 J. C. S. M alan, J. A. Steenkamp, J. P. Steynberg, D. A. Young and D. Ferreira, J. Chem. Soc., Perkin Trans. 1, 1990, 209.

13 J. C. S. M alan, D. A. Young, J. P. Steynberg and D. Ferriera, J. C hem. Soc., Perkin T rans. 1, 1990, 227.

14 L. Y. Foo, J. Chem. Soc., Chem. Commun., 1986, 236.
15 E. M alan and A. Sireeparsad, Phytochemistry, 1995, 38, 237; E. M alan, A. Sireeparsad, J. F. W. Burger and D. Ferreira, Tetrahedron Lett., 1994, 35, 7415.
16 J. A. Parrotta, Southern Forest Experiment Station, Institute of Tropical Forestry, U.S.D.A. Forest Service, New Orleans, Report SM -40, 1991.
17 D. G. Roux and E. Paulus, Biochem. J., 1961, 78, 120.
18 S. E. Drewes and D. G. Roux, J. Chem. Soc. (C), 1966, 1644.
19 R. W. Hemingway, L. Y. Foo and L. J. Porter, J. Chem. Soc., Perkin Trans. 1, 1982, 1209.

20 S. E. Drewes and D. G. Roux, Biochem. J., 1965, 96, 681.
21 D. G. Roux and E. A. M aihs, Biochem. J., 1960, 74, 44.
22 S. E. Drewes and D. G. Roux, B iochem. J., 1965, 94, 482.
23 H. K. L. H undt and D. G. Roux, J. Chem. Soc., Chem. Commun., 1978, 696; J. Chem. Soc., Perkin Trans. 1, 1981, 1227.
24 J. H. van der Westhuizen, D. F erreira and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1220.
25 L. Y. Foo and L. J. Porter, J. C hem. Soc., Perkin Trans. 1, 1983, 1535.
26 J. P. Steynberg, E. V. Brandt, D. Ferreira, C. A. Helfer, W. L. M attice, D. Gornik and R. W. Hemingway, M ag. Reson C hem., 1995, 33, 611.

27 C. A. H unter and J. K. M. Saunders, J. A m. Chem. Soc., 1990, 112, 5523.

28 A. C. F letcher, L. J. Porter, E. H aslam and R . K. Gupta, J. Chem. Soc., Perkin Trans. 1, 1977, 1628.
29 M . W. Barrett, W. K lyne, P. M. Scopes, A . C. Fletcher, L. J. Porter and E. H aslam, J. C hem. Soc., Perkin Trans. 1, 1979, 2375.

Paper 7/01334E
R eceived 25th February 1997
A ccepted 17th M arch 1997

[^0]: \dagger For Part 25, see P. J. Steynberg, A. Cronjé, J. P. Steynberg, B. C. B. Bezvidenhoudt, E. V. Brandt and D. Ferreira, Tetrahedron, 1997, 53, 2591.

[^1]: $\not{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and CD data for flavan-3,4-diol $\mathbf{3}$ and the remaining flavan-3,4-diols are presented for the first time

